Ứng dụng mô hình UTAUT2 và nhận thức rủi ro: Nghiên cứu hành vi mua sắm nông sản tươi trực tuyến tại Thành phố Hồ Chính Minh, Việt Nam

Trần Tuấn Anh1, , Lục Thị Tám1, Huỳnh Như Ngàn1
1 Trường Đại học Nông Lâm Thành phố Hồ Chí Minh
779
Ngày xuất bản: 26/12/2024
Ngày xuất bản Online: 25/12/2024
Chuyên mục: Bài nghiên cứu
DOI: https://doi.org/10.52932/jfm.v15i9.482

Nội dung chính của bài viết

Tóm tắt

Nghiên cứu này tập trung nghiên cứu các yếu tố ảnh hưởng đến hành vi mua sắm nông sản tươi trực tuyến của người tiêu dùng trên địa bàn Thành phố Hồ Chí Minh. Dữ liệu nghiên cứu thực nghiệm được thu thập qua việc khảo sát 500 người dân tại địa bàn nghiên cứu, dữ liệu sau khi thu thập và làm sạch còn lại 360 mẫu và được xử lý bằng phần mềm Smart-PLS phiên bản 3.3.3. Dữ liệu phân tích được thực hiện thông qua mô hình phương trình cấu trúc bình phương nhỏ nhất từng phần (PLS-SEM) trong hai giai đoạn, tức là mô hình đo lường và mô hình cấu trúc. Thông qua việc phân tích mô hình cấu trúc tuyến tính SEM và kiểm định ước lượng mô hình bằng Bootstrap, nhóm tác giả đã khám phá ra rằng, điều kiện thuận lợi, thói quen và nhận thức rủi ro có ảnh hưởng đến ý định và hành vi mua sắm nông sản tươi trực tuyến. Chúng tôi đề xuất một số giải pháp có giá trị tham khảo nhằm giúp các doanh nghiệp gia tăng quyết định mua sắm nông sản tươi trực tuyến của khách hàng.

Abstract

This study focuses on studying the factors that affect the online shopping behavior of consumers of fresh agricultural products in Ho Chi Minh City. Experimental research data was collected by surveying 500 people in the research area. After collection and cleaning, 360 samples remained and were processed with Smart-PLS software version 3.3.3. Data analysis was performed through partial least squares structural equation modeling (PLS-SEM) in two stages i.e., measurement model and structural model. Through analyzing the linear structural model SEM and testing model estimates using Bootstrap, the authors discovered that favorable conditions, habits, and risk perception impact on intention and behavior. We have proposed several reference-worthy solutions based on the research findings to help businesses enhance customers' decisions to purchase fresh agricultural products online.

Chi tiết bài viết

Tài liệu tham khảo

Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In Kuhl, J., Beckmann, J. (Eds.), Action control (pp. 11-39). Springer Series in Social Psychology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69746-3_2
Ajzen, I. (1991). The theory of planned behavior. Organizational behavior human decision processes, 50(2), 179-211. https://doi.org/10.1016/0749-5978(91)90020-T
Ajzen, I. (2002). Perceived behavioral control, self‐efficacy, locus of control, and the theory of planned behavior1. Journal of Applied Social Psychology, 32(4), 665–683. https://doi.org/10.1111/j.1559-1816.2002.tb00236.x
Ajzen, I., & Fishbein, M. (1975). A Bayesian analysis of attribution processes. Psychological Bulletin, 82(2). https://doi.org/10.1037/h0076477
Akhlaq, A., & Ahmed, E. (2013). The effect of motivation on trust in the acceptance of internet banking in a low income country. International Journal of Bank Marketing, 31(2), 115–125. https://doi.org/10.1108/02652321311298690
Alalwan, A. A. (2020). Mobile food ordering apps: An empirical study of the factors affecting customer e-satisfaction and continued intention to reuse. International Journal of Information Management, 50, 28–44. https://doi.org/10.1016/j.ijinfomgt.2019.04.008
Alalwan, A. A., Dwivedi, Y. K., Rana, N. P., Lal, B., & Williams, M. D. (2015). Consumer adoption of Internet banking in Jordan: Examining the role of hedonic motivation, habit, self-efficacy and trust. Journal of Financial Services Marketing, 20, 145–157. https://doi.org/10.1057/fsm.2015.5
Amirtha, R., Sivakumar, V. J., & Hwang, Y. (2020). Influence of perceived risk dimensions on e-shopping behavioural intention among women—A family life cycle stage perspective. Journal of Theoretical and Applied Electronic Commerce Research, 16(3), 320–355. https://doi.org/10.3390/jtaer16030022
An, L., Han, Y., & Tong, L. (2016). Study on the Factors of Online Shopping Intention for Fresh Agricultural Products Based on UTAUT2, Proceedings of the 2nd Information Technology and Mechatronics Engineering Conference (ITOEC 2016) (pp. 303-306). https://doi.org/10.2991/itoec-16.2016.57
Ariffin, S. K., Mohan, T., & Goh, Y. -N. (2018). Influence of consumers’ perceived risk on consumers’ online purchase intention. Journal of Research in Interactive Marketing, 12(3), 309–327. https://doi.org/10.1108/jrim-11-2017-0100
Baabdullah, A. M., Alalwan, A. A., Rana, N. P., Kizgin, H., & Patil, P. P. (2019). Consumer use of mobile banking (M-Banking) in Saudi Arabia: Towards an integrated model. International Journal of Information Management, 44, 38–52. https://doi.org/10.1016/j.ijinfomgt.2018.09.002
Bauer, R. A. (1967). Consumer behavior as risk taking. Marketing: Critical perspectives on business and management, 593, 13-21 .
Berthoud, H. -R, Morrison, C. D., & Münzberg, H. (2020). The obesity epidemic in the face of homeostatic body weight regulation: What went wrong and how can it be fixed? Physiology & Behavior, 222. https://doi.org/10.1016/j.physbeh.2020.112959
Bhatnagar, A., & Ghose, S. (2004). Segmenting consumers based on the benefits and risks of Internet shopping. Journal of Business Research, 57(12), 1352–1360. https://doi.org/10.1016/s0148-2963(03)00067-5
Bhatnagar, A., Misra, S., & Rao, H. R. (2000), On risk, convenience, and Internet shopping behavior. Communications of the ACM, 43(11), 98-105. https://dl.acm.org/doi/fullHtml/10.1145/353360.353371
Bhattacherjee, A. (2000). Acceptance of e-commerce services: the case of electronic brokerages. IEEE Transactions on Systems, Man, and Cybernetics, 30(4), 411–420. https://doi.org/10.1109/3468.852435
Carrasco, F. (2017). Global e-commerce grocery market grows 30%. Kantar. https://www.kantarworldpanel.com/vn/News/Global-e-commerce-grocery-market-grows-30
Chakraborty, R., Lee, J., Bagchi‐Sen, S., Upadhyaya, S., & Rao, H. R. (2016). Online shopping intention in the context of data breach in online retail stores: An examination of older and younger adults. Decision Support Systems, 83, 47–56. https://doi.org/10.1016/j.dss.2015.12.007
Chang, C. -M., Liu, L. -W., Huang, H. -C., & Hsieh, H. -H. (2019). Factors influencing online hotel booking: Extending UTAUT2 with age, gender, and experience as moderators. Information, 10(9). https://doi.org/10.3390/info10090281
Chen, M. -F. (2017). Modeling an extended theory of planned behavior model to predict intention to take precautions to avoid consuming food with additives. Food Quality and Preference, 58, 24–33. https://doi.org/10.1016/j.foodqual.2017.01.002
Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159. https://doi.org/10.1037/0033-2909.112.1.155
Pavlou, P. A. (2003). Consumer Acceptance of Electronic Commerce: Integrating Trust and Risk with the Technology Acceptance Model. International Journal of Electronic Commerce, 7(3), 101–134. https://doi.org/10.1080/10864415.2003.11044275
Pavlou, P. A. (2003). Consumer Acceptance of Electronic Commerce: Integrating Trust and Risk with the Technology Acceptance Model. International Journal of Electronic Commerce, 7(3), 101–134. https://doi.org/10.1080/10864415.2003.11044275
Corbitt, B. J., Thanasankit, T., & Yi, H. (2003), Trust and e-commerce: a study of consumer perceptions. Electronic Commerce Research and Applications, 2(3), 203-215. https://doi.org/10.1016/S1567-4223(03)00024-3
Crespo, Á. H., del Bosque, I. R., & de Los Salmones Sánchez, M. M. G. (2009). The influence of perceived risk on Internet shopping behavior: a multidimensional perspective. Journal of Risk Research, 12(2), 259–277. https://doi.org/10.1080/13669870802497744
Dai, B., Forsythe, S., & Kwon, W. -S. (2014). The impact of online shopping experience on risk perceptions and online purchase intentions: does product category matter?. Journal of Electronic Commerce Research, 15(1), 13-24. http://www.jecr.org/sites/default/files/15_1_p02.pdf
Dang, H. D., & Dam, A. H. T. (2022). Determinants of hygienic handling of food by consumers in the COVID-19 pandemic context: A cross-sectional study in Vietnam. Food Science and Technology, 42. https://doi.org/10.1590/fst.30221
Đoàn Thị Thanh Thư, Đàm Trí Cường (2021). Nghiên cứu những yếu tố ảnh hưởng đến hành vi mua sắm trực tuyến của sinh viên tại trường Đại học Công Nghiệp Thành phố Hồ Chí Minh, Tài liệu hội thảo Hội nghị Khoa học trẻ lần 3 năm 2021 (YSC2021) – IUH Ngày 06/8/2021 (pp. 175-188). Trường Đại học Công nghiệp Thành phố Hồ Chí Minh. https://www.researchgate.net/publication/357461124_Nghien_cuu_nhung_yeu_to_anh_huong_den_hanh_vi_mua_sam_truc_tuyen_cua_sinh_vien_tai_truong_dai_hoc_cong_nghiep_thanh_pho_Ho_Chi_Minh
Dong, J. (2021). Báo cáo Toàn cảnh ngành thương mại điện tử Việt Nam. Retrieved from Lazada: https://lazada-com.oss-ap-southeast-1.aliyuncs.com/151-press-release.pdf
Donthu, N., & Gustafsson, A. (2020). Effects of COVID-19 on business and research. Journal of Business Research, 117, 284–289. https://doi.org/10.1016/j.jbusres.2020.06.008
Erjavec, J., & Manfreda, A. (2022). Online shopping adoption during COVID-19 and social isolation: Extending the UTAUT model with herd behavior. Retailing Consumer Services, 65. https://doi.org/10.1016/j.jretconser.2021.102867
Featherman, M. S., & Pavlou, P. A. (2003). Predicting e-services adoption: a perceived risk facets perspective. International Journal of Human-Computer Studies, 59(4), 451–474. https://doi.org/10.1016/s1071-5819(03)00111-3
Forsythe, S., Liu, C., Shannon, D. & Gardner,. L. C. (2006). Development of a scale to measure the perceived benefits and risks of online shopping. Journal of Interactive Marketing, 20(2), 55-75. https://doi.org/10.1002/dir.20061
Garbarino, E., & Strahilevitz, M. (2004). Gender differences in the perceived risk of buying online and the effects of receiving a site recommendation. Journal of Business Research, 57(7), 768–775. https://doi.org/10.1016/s0148-2963(02)00363-6
Garson, G. D. (2016). Partial least squares: Regression & structural equation models. Statistical Associates Publishing. https://www.smartpls.com/resources/ebook_on_pls-sem.pdf
George, J. F. (2004). The theory of planned behavior and Internet purchasing. Internet Research, 14(3), 198–212. https://doi.org/10.1108/10662240410542634
Giovannini, C. J., Ferreira, J. B., Da Silva, J. F., & Ferreira, D. W. (2015). The effects of trust transference, mobile attributes and enjoyment on mobile trust. Bar. Brazilian Administration Review, 12(1), 88–108. https://doi.org/10.1590/1807-7692bar2015140052
Glanz, K., Rimer, B. K., & Viswanath, K. (Eds.). (2015). Health behavior: Theory, research, and practice (5th ed.) Jossey Bass A Willey Brand.
Glover, S., & Benbasat, I. (2010). A comprehensive model of perceived risk of e-commerce transactions. International Journal of Electronic Commerce, 15(2), 47–78. https://doi.org/10.2753/jec1086-4415150202
Gupta, A., Su, B., & Walter, Z. (2004). Risk profile and consumer shopping behavior in electronic and traditional channels. Decision Support Systems, 38(3), 347–367. https://doi.org/10.1016/j.dss.2003.08.002
Hair, J. F., Howard, M. C., & Nitzl, C. (2020). Assessing measurement model quality in PLS-SEM using confirmatory composite analysis. Journal of Business Research, 109, 101–110. https://doi.org/10.1016/j.jbusres.2019.11.069
Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2016). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). Sage Publications.
Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM) (2nd ed.). Sage Publications.
Harris, P., Riley, F. D., Riley, D., & Hand, C. (2017). Online and store patronage: a typology of grocery shoppers. International Journal of Retail & Distribution Management, 45(4), 419–445. https://doi.org/10.1108/ijrdm-06-2016-0103
Hidayat, R. (2020). New trend in new normal, factors influencing continuance intention to use video conferencing. Jurnal Ilmiah PoliBisnis, 12(1), 1-13. http://ejournal2.pnp.ac.id/index.php/jipb/article/view/374
Im, I., Hong, S., & Kang, M. S. (2011). An international comparison of technology adoption. Information & Management, 48(1), 1–8. https://doi.org/10.1016/j.im.2010.09.001
Kaplan, L. B., Szybillo, G. J., & Jacoby, J. (1974). Components of perceived risk in product purchase: A cross-validation. Journal of Applied Psychology, 59(3), 287–291. https://doi.org/10.1037/h0036657
Karnik, S. (2014). A study of dimensions of consumer's perceived risk and their influences on consumers buying behavior. Altius Shodh Journal of Management and Commerce, 1(2), 162-169.
Khedmatgozar, H. R. (2021). The impact of perceived risks on internet banking adoption in Iran: a longitudinal survey. Electronic Commerce Research, 21, 147–167. https://doi.org/10.1007/s10660-021-09475-y
Kim, S. S., & Malhotra, N. K. (2005). A Longitudinal Model of Continued IS use: An Integrative view of four mechanisms underlying postadoption phenomena. Management Science, 51(5), 741–755. https://doi.org/10.1287/mnsc.1040.0326
Kotler, P. (1999). Marketing Management: Analysis, Planning, Implementation, and Control (9th ed.). Pearson College Div.
Kumar, R., & Abdin, M. S. (2021). Impact of epidemics and pandemics on consumption pattern: evidence from Covid-19 pandemic in rural-urban India. Asian Journal of Economics and Banking, 5(1), 2–14. https://doi.org/10.1108/ajeb-12-2020-0109
Kwon, W. -S., & Lennon, S. J. (2009). What induces online loyalty? Online versus offline brand images. Journal of Business Research, 62(5), 557–564. https://doi.org/10.1016/j.jbusres.2008.06.015
Le Kim Dung (2020). Nghiên cứu hành vi mua sắm trực tuyến của người tiêu dùng Việt Nam (Luận án tiến sĩ, Viện Hàn Lâm Khoa học Xã hội Việt Nam). Retrieved from https://drive.google.com/file/d/1hc8XEuaEfdpqkEwtGF_PkL8iJgv_v2S3/view
Lee, S. W., Sung, H. J., & Jeon, H. M. (2019). Determinants of continuous intention on food delivery apps: Extending UTAUT2 with information quality. Sustainability, 11(11). https://doi.org/10.3390/su11113141
Liao, C., Lin, H. -N., & Liu, Y. -P. (2009). Predicting the use of pirated software: A contingency model integrating perceived risk with the theory of planned behavior. Journal of Business Ethics, 91, 237–252. https://doi.org/10.1007/s10551-009-0081-5
Limayem, M., Hirt, S. G., & Cheung, C. M. K. (2007). How habit limits the predictive power of intention: The case of information systems continuance. Management Information Systems Quarterly, 31(4), 705-737. https://doi.org/10.2307/25148817
Lorian, C. N., & Grisham, J. R. (2011). Clinical implications of risk aversion: An online study of risk-avoidance and treatment utilization in pathological anxiety. Journal of Anxiety Disorders, 25(6), 840–848. https://doi.org/10.1016/j.janxdis.2011.04.008
Mahajan, K., & Tomar, S. (2020). COVID‐19 and supply chain disruption: Evidence from food markets in India†. American Journal of Agricultural Economics, 103(1), 35–52. https://doi.org/10.1111/ajae.12158
Mehrolia, S., Alagarsamy, S., & Solaikutty, V. M. (2020). Customers response to online food delivery services during COVID‐19 outbreak using binary logistic regression. International Journal of Consumer Studies, 45(3), 396–408. https://doi.org/10.1111/ijcs.12630
Merhi, M., Hone, K., & Tarhini, A. (2019). A cross-cultural study of the intention to use mobile banking between Lebanese and British consumers: Extending UTAUT2 with security, privacy and trust. Technology in Society, 59(7). https://doi.org/10.1016/j.techsoc.2019.101151
Meskaran, F., Ismail, Z., & Shanmugam, B. (2013). Online purchase intention: Effects of trust and security perception. Australian journal of basic and applied sciences, 7(6), 307-315.
Moshrefjavadi, M. H., Dolatabadi, H. R., Nourbakhsh, M., Poursaeedi, A., & Asadollahi, A. (2012). An analysis of factors affecting on online shopping behavior of consumers. International Journal of Marketing Studies, 4(5), 81-98. https://doi.org/10.5539/ijms.v4n5p81
Nguyễn Xuân Hiệp, Khưu Minh Đạt (2020). The influence of perceived risks to online purchasing decision of people in Hochiminh City. Tạp Chí Nghiên Cứu Tài chính - Marketing, 60(6). https://doi.org/10.52932/jfm.vi60.2
Nguyen, C. Q., Tran, D. B. N., Nguyen, A. L., & Nguyen, N. (2021). The effects of perceived risks on food purchase intention: the case study of online shopping channels during Covid-19 pandemic in Vietnam. Journal of Distribution Science, 19(9), 19–27. https://doi.org/10.15722/jds.19.9.202109.19
Nguyen, T. D., Nguyen, D. T., & Cao, T. H. (2014). Acceptance and use of information system: E-Learning based on cloud computing in Vietnam. In Linawati, Mahendra, M.S., Neuhold, E.J., Tjoa, A.M., You, I. (Eds.), Proceeding of Information and Communication Technology. ICT-EurAsia 2014. Lecture Notes in Computer Science, vol 8407 (pp. 139–149). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55032-4_14
Niva, M. (2007). ‘All foods affect health’: Understandings of functional foods and healthy eating among health-oriented Finns. Appetite, 48(3), 384–393. https://doi.org/10.1016/j.appet.2006.10.006
Pantano, E., Pizzi, G., Scarpi, D., & Dennis, C. (2020). Competing during a pandemic? Retailers’ ups and downs during the COVID-19 outbreak. Journal of Business Research, 116, 209–213. https://doi.org/10.1016/j.jbusres.2020.05.036
Pham, T. B. T., Dang, L. A., Le, T. M. H., & Le, T. H. (2020). Factors affecting teachers’ behavioral intention of using information technology in lecturing-economic universities. Management Science Letters, 10(11), 2665–2672. https://doi.org/10.5267/j.msl.2020.3.026
Pham, V. K., Thi, T. H. D., & Le, T. H. H. (2020). A study on the COVID-19 awareness affecting the consumer perceived benefits of online shopping in Vietnam. Cogent Business & Management, 7(1),. https://doi.org/10.1080/23311975.2020.1846882
Rana, R. S., Kumar, D., & Prasad, K. (2022). Two warehouse dispatching policies for perishable items with freshness efforts, inflationary conditions and partial backlogging. Operations Management Research, 15, 28–45. https://doi.org/10.1007/s12063-020-00168-7
Richa, D. (2012). Impact of demographic factors of consumers on online shopping behaviour: A study of consumers in India. International Journal of Engineering and Management Sciences, 3(1), 43-52.
Richards, T. J., & Rickard, B. (2020). COVID‐19 impact on fruit and vegetable markets. Canadian Journal of Agricultural Economics/Revue Canadienne D’Agroeconomie, 68(2), 189–194. https://doi.org/10.1111/cjag.12231
Santo, P. E., & Marques, A. M. A. (2021). Determinants of the online purchase intention: hedonic motivations, prices, information and trust. Baltic Journal of Management, 17(1), 56–71. https://doi.org/10.1108/bjm-04-2021-0140
Sarstedt, M., Hair, J. F., Cheah, J. -H., Becker, J. -M., & Ringle, C. M. (2019). How to specify, estimate, and validate higher-order constructs in PLS-SEM. Australasian Marketing Journal, 27(3), 197–211. https://doi.org/10.1016/j.ausmj.2019.05.003
Shanker, S., Barve, A., Muduli, K., Kumar, A., Garza‐Reyes, J. A., & Joshi, S. K. (2021). Enhancing resiliency of perishable product supply chains in the context of the COVID-19 outbreak. International Journal of Logistics Research Applications, 25(9), 1219–1243. https://doi.org/10.1080/13675567.2021.1893671
Sharif, A., & Raza, S. A. (2017). The influence of hedonic motivation, self-efficacy, trust and habit on adoption of internet banking: a case of developing country. International Journal of Electronic Customer Relationship Management, 11(1). https://doi.org/10.1504/ijecrm.2017.086750
Sheth, J. (2020). Impact of Covid-19 on consumer behavior: Will the old habits return or die? Journal of Business Research, 117, 280–283. https://doi.org/10.1016/j.jbusres.2020.05.059
Shin, M., Lee, H., Ryu, K., Cho, Y., & Son, Y. -J. (2019). A two-phased perishable inventory model for production planning in a food industry. Computers & Industrial Engineering, 133, 175–185. https://doi.org/10.1016/j.cie.2019.05.010
Soh, P. Y., Heng, H. B., Selvachandran, G., Le Quynh Anh, Hoang Thi Minh Chau, Le Hoang Son, Abdel-Baset, M., Manogaran, G., & Varatharajan, R. (2020). Perception, acceptance and willingness of older adults in Malaysia towards online shopping: a study using the UTAUT and IRT models. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-020-01718-4
Sullivan, Y. W., & Kim, D. J. (2018). Assessing the effects of consumers’ product evaluations and trust on repurchase intention in e-commerce environments. International Journal of Information Management, 39, 199–219. https://doi.org/10.1016/j.ijinfomgt.2017.12.008
Sweeney, J. C., Soutar, G. N., & Johnson, L. W. (1999). The role of perceived risk in the quality-value relationship: A study in a retail environment. Journal of Retailing, 75(1), 77–105. https://doi.org/10.1016/s0022-4359(99)80005-0
Taylor, S., & Todd, P. A. (1995). Understanding information technology usage: A test of competing models. Information Systems Research, 6(2), 144–176. https://doi.org/10.1287/isre.6.2.144
Teo, T. (2011). Factors influencing teachers’ intention to use technology: Model development and test. Computers & Education, 57(4), 2432–2440. https://doi.org/10.1016/j.compedu.2011.06.008
Tianqi, Z. (2017). Paths for upgrade and transformation of e-commerce of China’s fresh agricultural products based on whole industry supply chain. Asian Agricultural Research, 9(8), 1–4. https://doi.org/10.22004/ag.econ.265362
Tsai, Y. C., & Yeh, J. C. (2010). Perceived risk of information security and privacy in online shopping: A study of environmentally sustainable products. African Journal of Business Management, 4(18), 4057-4066. https://academicjournals.org/article/article1380549606_Tsai%20and%20Yeh.pdf
Venkatesh, V., & Davis, F. D. (1996). A model of the antecedents of perceived ease of use: Development and test. Decision Sciences, 27(3), 451–481. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-5915.1996.tb00860.x
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: toward a unified view. Management Information Systems Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540
Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer acceptance and use of Information technology: Extending the unified theory of acceptance and use of technology. Management Information Systems Quarterly, 36(1), 157-178. https://doi.org/10.2307/41410412
Venkatesh, V., Thong, J. Y. L., & Xu, X. (2016). Unified theory of acceptance and use of technology: a Synthesis and the road ahead. Journal of the Association for Information Systems, 17(5), 328–376. https://doi.org/10.17705/1jais.00428
Venkatesh, V., Thong, J. Y. L., Chan, F. K. Y., Hu, P. J. -H., & Brown, S. A. (2011). Extending the two-stage information systems continuance model: incorporating UTAUT predictors and the role of context. Information Systems Journal, 21(6), 527–555. https://doi.org/10.1111/j.1365-2575.2011.00373.x
Ventre, I., & Kolbe, D. (2020). The impact of perceived usefulness of online reviews, trust and perceived risk on online purchase intention in emerging markets: A Mexican perspective. Journal of International Consumer Marketing, 32(4), 287–299. https://doi.org/10.1080/08961530.2020.1712293
Wang, C. -H., Chiang, Y. -C., & Wang, M. -J. (2015). Evaluation of an augmented reality embedded on-line shopping system. Procedia Manufacturing, 3, 5624–5630. https://doi.org/10.1016/j.promfg.2015.07.766
Wei, Y., Wang, C., Zhu, S., Xue, H., & Chen, F. (2018). Online purchase Intention of fruits: Antecedents in an integrated model based on technology acceptance model and perceived risk theory. Frontiers in Psychology, 9. https://doi.org/10.3389/fpsyg.2018.01521
World Trade Organization. (1995). Agreement on agriculture. https://www.wto.org/english/docs_e/legal_e/14-ag_01_e.htm
XiChuan, Z., YongFeng, L., Ye, W., Ting, K. (2015). Application of modeling techniques based on CFD in food cold chain logistics. Journal of Food Safety and Quality, 6(1), 207-211.
Yan, X., Dai, S. (2009). Consumer’s Online Shopping Influence Factors and Decision-Making Model. In M. L. Nelson, M. J. Shaw, T. J. Strader (Eds.) Value Creation in E-Business Management. AMCIS 2009. Lecture Notes in Business Information Processing (vol 36, pp. 99-102). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03132-8_8
Yeo, V. C. S., Goh, S. -K., & Rezaei, S. (2017). Consumer experiences, attitude and behavioral intention toward online food delivery (OFD) services. Journal of Retailing and Consumer Services, 35, 150–162. https://doi.org/10.1016/j.jretconser.2016.12.013
Zhuang, H., Leszczyc, P. T. L. P., & Lin, Y. (2018). Why is price dispersion higher online than offline? the impact of retailer type and shopping risk on price dispersion. Journal of Retailing, 94(2), 136–153. https://doi.org/10.1016/j.jretai.2018.01.003
Trích dẫn bài báo
Anh, T. T., Tám, L. T., & Ngàn, H. N. (2024). Ứng dụng mô hình UTAUT2 và nhận thức rủi ro: Nghiên cứu hành vi mua sắm nông sản tươi trực tuyến tại Thành phố Hồ Chính Minh, Việt Nam. Tạp chí Nghiên cứu Tài chính - Marketing, 15(9), 91-106. https://doi.org/10.52932/jfm.v15i9.482