Phân tích nhận thức rủi ro của người tiêu dùng thế hệ Y và thế hệ Z trong việc mua sắm nông sản tươi trực tuyến trên địa bàn Thành phố Hồ Chí Minh

Trần Tuấn Anh1, , Lục Thị Tám1, Huỳnh Như Ngàn1
1 Trường Đại học Nông Lâm Thành phố Hồ Chí Minh
186
Ngày xuất bản: 25/04/2025
Ngày xuất bản Online: 25/04/2025
Chuyên mục: Quản trị kinh doanh, Marketing, Thương mại, Du lịch
DOI: https://doi.org/10.52932/jfm.v16i2.470

Nội dung chính của bài viết

Tóm tắt

Nghiên cứu đã đạt được mục tiêu đề ra là phân tích nhận thức rủi ro của người tiêu dùng theo thế hệ trong việc mua nông sản tươi trực tuyến trên địa bàn Thành phố Hồ Chí Minh. Dữ liệu nghiên cứu được thu thập từ người dân thế hệ Y và thế hệ Z đã có mua nông sản tươi trực tuyến ở Thành phố Hồ Chí Minh, sau quá trình làm sạch dữ liệu còn 350 mẫu được đưa vào phân tích chính thức bằng phần mềm Smart PLS 3.3.3. Bẳng cách tham chiếu những nghiên cứu trước đây về nhận thức rủi ro trong hoạt động mua sắm trực tuyến có liên quan với thực tế về ý định mua sắm trực tuyến hiện nay tại địa bàn nghiên cứu, nhóm tác giả đã xây dựng mô hình nghiên cứu nhận thức rủi ro của người tiêu dùng thế hệ Y và thế hệ Z đối với ý định mua nông sản tươi trực tuyến. Kết quả nghiên cứu mô hình cấu trúc tuyến tính PLS-SEM cho thấy, những yếu tố nhận thức rủi ro có tác động tiêu cực đến ý định mua nông sản tươi trực tuyến. Bên cạnh đó cũng có sự khác biệt giữa 2 thế hệ Y và Z cũng có ảnh hưởng trong mối quan hệ giữa nhận thức rủi ro và ý định mua nông sản tươi trực tuyến. Từ đó đưa ra kết luận, một số hàm ý quản trị có giá trị tham khảo cho các doanh nghiệp kinh doanh nông sản tươi trực tuyến. 

Abstract

The research achieved its goal of analyzing consumers' risk perceptions by generation when purchasing fresh agricultural products online in Ho Chi Minh City. Research data was collected from generation Y and generation Z people who bought fresh agricultural products online in Ho Chi Minh City. After the data cleaning process, 350 samples were included in the official analysis using Smart PLS software 3.3.3. By referring to previous studies on risk perception in online shopping activities related to current online shopping intentions in the research area, the authors have built a research model on the risk perception of generation Y and generation Z consumers regarding their intention to purchase fresh agricultural products online.The results of the PLS-SEM linear structural model study show that risk perception factors have a negative impact on the intention to buy fresh agricultural products online. Besides, there are also differences between generations Y and Z that also have an influence on the relationship between risk perception and the intention to buy fresh agricultural products online. From there, we draw conclusions and some management implications that are valuable references for businesses trading fresh agricultural products online.

Chi tiết bài viết

Tài liệu tham khảo

Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In Action control (pp. 11-39). Springer Series in Social Psychology: Springer, Berlin, Heidelberg.
Agrawal, D. K. (2022). Determining behavioural differences of Y and Z generational cohorts in online shopping. International Journal of Retail & Distribution Management, 50(7), 880–895. https://doi.org/10.1108/ijrdm-12-2020-0527
Ariffin, S. K., Mohan, T. R. M., & Goh, Y. (2018). Influence of consumers’ perceived risk on consumers’ online purchase intention. Journal of Research in Interactive Marketing, 12(3), 309–327. https://doi.org/10.1108/jrim-11-2017-0100
Ahmed, R. R., Štreimikienė, D., Rolle, J., & Duc, P. A. (2020). The COVID-19 pandemic and the antecedants for the impulse buying behavior of US citizens. Journal of Competitiveness, 12(3), 5–27. https://doi.org/10.7441/joc.2020.03.01
Amirtha, R., Sivakumar, V., & Hwang, Y. (2020). Influence of Perceived Risk Dimensions on e-Shopping Behavioural Intention among Women—A Family Life Cycle Stage Perspective. Journal of Theoretical and Applied Electronic Commerce Research, 16(3), 320–355. https://doi.org/10.3390/jtaer16030022
Bhatnagar, A., & Ghose, S. (2004). Segmenting consumers based on the benefits and risks of Internet shopping. Journal of Business Research, 57(12), 1352–1360. https://doi.org/10.1016/s0148-2963(03)00067-5
Bauer, R. A. (1960). Consumer behavior as risk taking. In Proceedings of the 43rd National Conference of the American Marketing Assocation, June 15, 16, 17, Chicago, Illinois, 1960. American Marketing Association.
Brown, M. (2017). AdReaction: Engaging genes X, Y, and Z. Accessed October 10, 2021 atwww.millwardbrown.com
Bhatnagar, A., Misra, S., & Rao, H. R. (2000). On risk, convenience, and Internet shopping behavior. Communications of the ACM, 43(11), 98-105. https://dl.acm.org/doi/fullHtml/10.1145/353360.353371
Bucuta, A. (2015). A review of the specific characteristics of the generation Y consumer. In The Proceedings of the International Conference" Marketing-from Information to Decision" (p. 38). Babes Bolyai University.
Chakraborty, R., Lee, J., Bagchi‐Sen, S., Upadhyaya, S., & Rao, H. R. (2016). Online shopping intention in the context of data breach in online retail stores: An examination of older and younger adults. Decision Support Systems, 83, 47–56. https://doi.org/10.1016/j.dss.2015.12.007
Cox, D. F. (1964). Risk taking and information handling in consumer behavior In D. F. Blankertz (Ed.), Risk taking and information handling in consumer behavior (Vol. 6, pp. 110-111): Journal of Marketing Research.
Corbitt, B. J., Thanasankit, T., & Yi, H. (2003). Trust and e-commerce: a study of consumer perceptions. Electronic Commerce Research and Applications, 2(3), 203-215. https://doi.org/10.1016/S1567-4223(03)00024-3
Cunningham, M. S. (1967). The major dimensions of perceived risk. Risk taking information handling in consumer behavior, 48(12), 917-923. doi:1570572700615850880
Chen, M. (2017). Modeling an extended theory of planned behavior model to predict intention to take precautions to avoid consuming food with additives. Food Quality and Preference, 58, 24–33. https://doi.org/10.1016/j.foodqual.2017.01.002
Ćuzović, S., Mladenović, S. S., & Ćuzović, Đ. (2022). Trade in counterfeit products in conditions of crisis caused by the COVID-19 pandemic. In Emerald Publishing Limited eBooks (pp. 121–145). https://doi.org/10.1108/978-1-80117-574-620221006
Dai, B., Forsythe, S., & Kwon, W.S. (2014), “The impact of online shopping experience on risk perceptions and online purchase intentions: does product category matter?”, Journal of Electronic Commerce Research, 15(1), pp.13-24.
Dang, H., & Dam, A. H. T. (2022). Determinants of hygienic handling of food by consumers in the COVID-19 pandemic context: A cross-sectional study in Vietnam. Food Science and Technology, 42. https://doi.org/10.1590/fst.30221
Dang, H. D., Pham, T. T., Tran, G. T., Dam, A. H. T., & Nguyen, M. T. T. (2019). Vietnamese consumers’ preferences for traceable food and safety attributes: The case of water spinach. Journal of Asian Business and Economic Studies, 26(S02), 47-70
Dholakia, U. M. (2001). A motivational process model of product involvement and consumer risk perception. European Journal of Marketing, 35(11), 1340-1362. doi:10.1108/EUM0000000006479
Faqih, K. M. (2011). Integrating perceived risk and trust with technology acceptance model: An empirical assessment of customers' acceptance of online shopping in Jordan. Paper presented at the 2011 International Conference on Research and Innovation in Information Systems.
Featherman, M., & Pavlou, P. A. (2003). Predicting e-services adoption: a perceived risk facets perspective. International Journal of Human-Computer Studies, 59(4), 451–474. https://doi.org/10.1016/s1071-5819(03)00111-3
Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39–50. https://doi.org/10.1177/002224378101800104
Forsythe, S., Liu, C., Shannon, D. & Gardner,. L.C. (2006), “Development of a scale to measure the perceived benefits and risks of online shopping”, Journal of Interactive Marketing, 20(2), 55-75.
Garbarino, E., & Strahilevitz, M. (2004). Gender differences in the perceived risk of buying online and the effects of receiving a site recommendation. Journal of Business Research, 57(7), 768–775. https://doi.org/10.1016/s0148 2963(02)00363-6
Glover, S. C., & Benbasat, I. (2010). A comprehensive model of perceived risk of E-Commerce transactions. International Journal of Electronic Commerce, 15(2), 47–78. https://doi.org/10.2753/jec1086-4415150202
Garson, G. D. (2016). Partial least squares: regression and structural equation models. Cham: Statistical Publishing Associates.
Gilboa, S., & Vilnai‐Yavetz, I. (2010). Four generations of mall visitors in Israel: A study of mall activities, visiting patterns, and products purchased. Journal of Retailing and Consumer Services, 17(6), 501–511. https://doi.org/10.1016/j.jretconser.2010.08.005
Hair, J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2017). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2nd edition.
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS_SEM. European Business Review, 31(1), 2-24. https://doi.org/10.1108/EBR-11-2018-0203
Hair, J. F., Howard, M. C., & Nitzl, C. (2020). Assessing measurement model quality in PLS-SEM using confirmatory composite analysis. Journal of Business Research, 109, 101–110. https://doi.org/10.1016/j.jbusres.2019.11.069
Hassan, A., Kunz, M., Pearson, A., & Mohamed, F. (2006). Conceptualization and measurement of perceived risk in online shopping. Marketing Management Journal, 16(1), 138-147.
Herrero, Á., Del Bosque, I. R., & De Los Salmones Sánchez, M. M. G. (2009). The influence of perceived risk on Internet shopping behavior: a multidimensional perspective. Journal of Risk Research, 12(2), 259–277. https://doi.org/10.1080/13669870802497744
Häubl, G., & Trifts, V. (2000). Consumer Decision making in Online shopping Environments: The effects of Interactive Decision Aids. Marketing Science, 19(1), 4–21. https://doi.org/10.1287/mksc.19.1.4.15178
Hưng, T. N., Hùng, D. N., Nam, N. T., & Vũ, T. N. A. (2021). Sự tác động của các đặc điểm tính cách đến ý định đầu tư tài chính cá nhân: Một nghiên cứu trên thế hệ Y. Ho Chi Minh City Open University Journal of Science - Economics and Business Administration, 15(3), 114–126. https://doi.org/10.46223/hcmcoujs.econ.vi.15.3.1331.2020
Hamzaoui-Essoussi, L., Sirieix, L., & Zahaf, M. (2013). Trust orientations in the organic food distribution channels: a comparative study of the Canadian and French markets. Journal of Retailing and Consumer Services, 20(3), 292-301. http://dx.doi.org/10.1016/j. jretconser.2013.02.002.
Chang, H. H., & Chen, S. W. (2008). The impact of online store environment cues on purchase intention: Trust and perceived risk as a mediator. Online Information Review, 32(6), 818-841. https://doi.org/10.1108/14684520810923953
Jacoby, J., & Kaplan, L. (1972). The components of perceived risk. ACR special volumes, 382-393. doi:12016/volumes%20/sv02/SV-02
Kwon, W., & Lennon, S. J. (2009). What induces online loyalty? Online versus offline brand images. Journal of Business Research, 62(5), 557–564. https://doi.org/10.1016/j.jbusres.2008.06.015
Karnik, S. (2014). A study of dimensions of consumer's perceived risk and their influences on consumers buying behavior. Altius Shodh Journal of Management and Commerce, 1(2), 162-169.
Kaplan, L. B., Szybillo, G. J., & Jacoby, J. (1974). Components of perceived risk in product purchase: A cross-validation. Journal of Applied Psychology, 59(3), 287–291. https://doi.org/10.1037/h0036657
K. C. Williams and R. A. Page, “Marketing to the Generations,” Journal of Behavioral Studies in Business, vol. 3, pp. 1-7, 2010.
Khedmatgozar, H. R. (2021). The impact of perceived risks on internet banking adoption in Iran: a longitudinal survey. Electronic Commerce Research, 21(1), 147–167. https://doi.org/10.1007/s10660-021-09475-y
Konuk, F. A. (2018). The role of store image, perceived quality, trust and perceived value in predicting consumers’ purchase intentions towards organic private label food. Journal of Retailing and Consumer Services, 43, 304-310. http://dx.doi.org/10.1016/j.jretconser.2018.04.011.
Li, Z., Sha, Y., Song, X., Yang, K., Zhao, K., Jiang, Z., & Zhang, Q. (2020). Impact of risk perception on customer purchase behavior: a meta-analysis. Journal of Business & Industrial Marketing, 35(1), 76–96. https://doi.org/10.1108/jbim-12-2018-0381
Liang, A. R., & Lim, W. (2020). Why do consumers buy organic food? Results from an S–O–R model. Asia Pacific Journal of Marketing and Logistics, 33(2), 394–415. https://doi.org/10.1108/apjml-03-2019-0171
Lissitsa, S., & Kol, O. (2019). Four generational cohorts and hedonic m-shopping: association between personality traits and purchase intention. Electronic Commerce Research, 21(2), 545–570. https://doi.org/10.1007/s10660-019-09381-4
Liao, C., Lin, H., & Liu, Y. (2009). Predicting the Use of Pirated Software: A Contingency Model Integrating Perceived Risk with the Theory of Planned Behavior. Journal of Business Ethics, 91(2), 237–252. https://doi.org/10.1007/s10551-009-0081-5
Lorian, C. N., & Grisham, J. R. (2011). Clinical implications of risk aversion: An online study of risk-avoidance and treatment utilization in pathological anxiety. Journal of Anxiety Disorders, 25(6), 840–848. https://doi.org/10.1016/j.janxdis.2011.04.008
Levickaite, R. J. L. C. R. (2010). Generations X, Y, Z: How social networks form the concept of the world without borders (the case of Lithuania). 3(2), 170-183.
Marriott, H. R., & Williams, M. D. (2018). Exploring consumers perceived risk and trust for mobile shopping: A theoretical framework and empirical study. Journal of Retailing and Consumer Services, 42, 133–146. https://doi.org/10.1016/j.jretconser.2018.01.017
Martin, N. M., & Prince, D. (2008). Factoring for X: An empirical study of Generation X's materialistic attributes. Journal of Management and Marketing research, 1, 65-78. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=13145605e1ce939f69ee702a2cc6fb40eebedeef
Mason, A. N., Narcum, J., & Mason, K. (2021). Social media marketing gains importance after Covid-19. Cogent Business & Management, 8(1). https://doi.org/10.1080/23311975.2020.1870797
Master Card Worldwide Insights. (2008). Environmental Challenges in Asia/Pacific, Middle East and Africa––Ranking of Worldwide Centers of Commerce. Retrieved from https://biz-file.com/f/article/23063_1.pdf
Meskaran, F., Ismail, Z., & Shanmugam, B. (2013). Online purchase intention: Effects of trust and security perception. Australian journal of basic and applied sciences, 7(6), 307-315.
Merriman, M. (2015). What if the next big disruptor isn’ta what but a who. Ernst & Young.
Mehrolia, S., Alagarsamy, S., & Solaikutty, V. M. (2020). Customers response to online food delivery services during COVID‐19 outbreak using binary logistic regression. International Journal of Consumer Studies, 45(3), 396–408. https://doi.org/10.1111/ijcs.12630
Milaković, I. K. (2021). Purchase experience during the COVID‐19 pandemic and social cognitive theory: The relevance of consumer vulnerability, resilience, and adaptability for purchase satisfaction and repurchase. International Journal of Consumer Studies, 45(6), 1425–1442. https://doi.org/10.1111/ijcs.12672
Moshrefjavadi, M. H., Dolatabadi, H. R., Nourbakhsh, M., Poursaeedi, A., & Asadollahi, A. (2012). An analysis of factors affecting on online shopping behavior of consumers. International Journal of Marketing Studies, 4(5). https://doi.org/10.5539/ijms.v4n5p81
Morwitz, V. G., Steckel, J. H., & Gupta, A. (2007). When do purchase intentions predict sales? International Journal of Forecasting, 23(3), 347-364. doi:https://doi.org/10.1016/j.ijforecast.2007.05.015
Moore, K., Jones, C., & Frazier, R. S. (2017). Engineering Education for Generation Z. American Journal of Engineering Education, 8(2), 111–126. https://doi.org/10.19030/ajee.v8i2.10067
Nguyễn, X. H., & Khưu, M. Đ. (2020). The influence of perceived risks to online purchasing decision of people in Hochiminh City. Tạp Chí Nghiên Cứu Tài chính-Marketing. https://doi.org/10.52932/jfm.vi60.2
Nguyen, C. (2021, September 15). The Effects of Perceived Risks on Food Purchase Intention: The Case Study of Online Shopping Channels during COVID-19 Pandemic in Vietnam. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3924160
Orubu, O. F. (2016). The impact of perceived risk on willingness to buy in online markets. E3 Journal of Business Management and Economics, 7(1), 013–018. https://doi.org/10.18685/ejbme(7)1_ejbme-15-020
Pham, V. K., Thi, T. H., & Le, T. H. (2020). A study on the COVID-19 awareness affecting the consumer perceived benefits of online shopping in Vietnam. Cogent Business & Management, 7(1), 1846882. https://doi.org/10.1080/23311975.2020.1846882
Park, J., Lee, D., & Ahn, J. (2004). Risk-focused e-commerce adoption model: A cross-country study. Journal of Global Information technology management, 7(2), 6-30. doi:10.1080/1097198X.2004.10856370
Peña-García, N., Gil-Saura, I., Rodríguez-Orejuela, A., & Siqueira-Junior, J. R. (2020). Purchase intention and purchase behavior online: A cross-cultural approach. Heliyon, 6(6), e04284. doi:https://doi.org/10.1016/j.heliyon.2020.e04284
Roblek, V., Meško, M., Dimovski, V., & Peterlin, J. (2019). Smart technologies as social innovation and complex social issues of the Z generation. Kybernetes, 48(1), 91–107. https://doi.org/10.1108/k-09-2017-0356
Ringle, C. M., Wende, S., & Becker, J. M. (2015). SmartPLS 3. Boenningstedt: SmartPLS GmbH. Retrieved from http://www.smartpls.com
Soares, J. C., Limongi, R., De Sousa Júnior, J. H., Santos, W. S., Raasch, M., & Hoeckesfeld, L. (2022). Assessing the effects of COVID-19-related risk on online shopping behavior. Journal of Marketing Analytics, 11(1), 82–94. https://doi.org/10.1057/s41270-022-00156-9
Sarstedt, M., Hair Jr, J. F., Cheah, J. H., Becker, J. M., & Ringle, C. M. (2019). How to specify, estimate, and validate higher-order constructs in PLS-SEM. Australasian marketing journal, 27(3), 197-211. https://doi.org/10.1016/j.ausmj.2019.05.003
Sarstedt, M., Henseler, J., & Ringle, C. M. (2011). Multigroup analysis in partial least squares (PLS) path modeling: Alternative methods and empirical results. In Measurement and research
methods in international marketing. Emerald Group Publishing Limited. (Vol. 22, pp. 195-218).
Sullivan, Y. W., & Kim, D. J. (2018). Assessing the effects of consumers’ product evaluations and trust on repurchase intention in e-commerce environments. International Journal of Information Management, 39, 199–219. https://doi.org/10.1016/j.ijinfomgt.2017.12.008
Sweeney, J., Soutar, G. N., & Johnson, L. W. (1999). The role of perceived risk in the quality-value relationship: A study in a retail environment. Journal of Retailing, 75(1), 77–105. https://doi.org/10.1016/s0022-4359(99)80005-0
Tanadi, T., Samadi, B., & Gharleghi, B. (2015). The Impact of Perceived Risks and Perceived Benefits to Improve an Online Intention among Generation-Y in Malaysia. Asian Social Science, 11(26). https://doi.org/10.5539/ass.v11n26p226
Tian-Qi, Z. (2017). Paths for upgrade and transformation of e-commerce of China’s fresh agricultural products based on whole industry supply chain. Asian Agricultural Research, 9(8), 1–4. https://doi.org/10.22004/ag.econ.265362
Tsai, Y. C., & Yeh, J. C. (2010). Perceived risk of information security and privacy in online shopping: A study of environmentally sustainable products. African Journal of Business Management, 4(18), 4057. http://www.academicjournals.org/AJBM
Tsao, W.-C., & Chang, H.-R. (2010). Exploring the impact of personality traits on online shopping behavior. African journal of business management, 4(9), 1800-1812. https://academicjournals.org/journal/AJBM/article-full-text-pdf/3F838BE31935.pdf
Venkatesh, V., & Davis, F. D. (1996). A model of the antecedents of perceived ease of use: Development and test. Decision Sciences, 27(3), 451–481. https://doi.org/10.1111/j.1540-5915.1996.tb00860.x
Tham, K. W., Dastane, O., Johari, Z., & Ismail, N. B. (2019). Perceived risk factors affecting consumers' online shopping behaviour. The Journal of Asian Finance, Economics and Business, 6(4), 249-260. https://doi.org/10.2139/ssrn.3498766
Wang, S., Hsu, H., Campbell, T., Coster, D. C., & Longhurst, M. (2014). An investigation of middle school science teachers and students use of technology inside and outside of classrooms: considering whether digital natives are more technology savvy than their teachers. Educational Technology Research and Development, 62(6), 637–662. https://doi.org/10.1007/s11423-014-9355-4
Wei, Y., Wang, C., Zhu, S., Xue, H., & Chen, F. (2018). Online purchase Intention of fruits: Antecedents in an integrated model based on technology acceptance model and perceived risk theory. Frontiers in Psychology, 9. https://doi.org/10.3389/fpsyg.2018.01521
Xiaohui, K., Mather, D., Ott, D. L., Fang, E. S., Bremer, P., & Mirosa, M. (2021). Fresh food online shopping repurchase intention: the role of post-purchase customer experience and corporate image. International Journal of Retail & Distribution Management, 50(2), 206–228. https://doi.org/10.1108/ijrdm-04-2021-0184
Yan, X., & Dai, S. (2009). Consumer’s online shopping influence Factors and Decision-Making model. In Lecture notes in business information processing (pp. 89–102). https://doi.org/10.1007/978-3-642-03132-8_8
Yoon, C.; Cole, C.A.; Lee, M.P (2009). Consumer Decision Making and Aging: Current Knowledge and Future Directions. J. Consum. Psychol, 19, 2–16.
Zhuang, H., Leszczyc, P. T. L. P., & Lin, Y. (2018). Why is Price Dispersion Higher Online than Offline? The Impact of Retailer Type and Shopping Risk on Price Dispersion. Journal of Retailing, 94(2), 136–153. https://doi.org/10.1016/j.jretai.2018.01.003
Zhai, X., Liu, Y., Wang, Y., & Ku, T. (2015). Application of modeling techniques based on CFD in food cold chain logistics. Journal of Food Safety and Quality, 6(1), 207-211.
Trích dẫn bài báo
Trần, T. A., Lục , T. T., & Huỳnh , N. N. (2025). Phân tích nhận thức rủi ro của người tiêu dùng thế hệ Y và thế hệ Z trong việc mua sắm nông sản tươi trực tuyến trên địa bàn Thành phố Hồ Chí Minh. Tạp chí Nghiên cứu Tài chính - Marketing, 16(2), 93-108. https://doi.org/10.52932/jfm.v16i2.470