Sự chấp nhận ứng dụng AI trong lĩnh vực tài chính cá nhân
Nội dung chính của bài viết
Tóm tắt
Mục đích của nghiên cứu này là đánh giá các nhân tố tác động đến sự chấp nhận ứng dụng AI trong lĩnh vực tài chính của đối tượng Gen Z với sự kết hợp giữa 3 mô hình lý thuyết. Nghiên cứu này đo lường sự ảnh hưởng của mô hình Tính phù hợp với tác vụ (TTF) đến mô hình chấp nhận công nghệ (TAM) và mô hình hệ thống thông tin thành công (ISS). Phương pháp định lượng được nghiên cứu này sử dụng với việc thu thập dữ liệu dựa trên ứng dụng Google biểu mẫu và bảng câu hỏi được thiết lập bằng việc kế thừa từ các nghiên cứu trước liên quan. Theo kết quả nghiên cứu, người dùng cảm nhận tính dễ sử dụng và tính hữu ích nhờ vào sự phù hợp với tác vụ của họ mà ứng dụng ngân hàng AI mang lại, qua đó tác động tích cực đến sự chấp nhận. Tuy nhiên, ứng dụng chưa thực sự mang lại sự hài lòng đáng kể cho người dùng. Nghiên cứu được mong đợi khi có thể đóng góp tích cực về mặt lý thuyết đối với các nghiên cứu trong tương lại về lĩnh vực công nghệ ngân hàng, nghiên cứu này cũng khuyến nghị các nhà phát triển ứng dụng cần tích hợp nhiều tính năng công nghệ hơn nhằm gia tăng sự hài lòng và sự chấp nhận ứng dụng ngân hàng AI của người dùng. Nghiên cứu này cũng đề xuất các nghiên cứu tương lai đánh giá và đo lường thêm các khái niệm giả thuyết để có thể đánh giá toàn diện về sự chấp nhận của người dùng đối với ứng dụng AI trong lĩnh vực tài chính cá nhân.
Abstract
This study aims to evaluate the factors affecting the adoption of AI applications in the financial sector of Generation Z with the combination of 3 theoretical models. This study measures the influence of the Technology Task Fit (TTF) on the Technology Acceptance Model (TAM) and the Information Success System (ISS). The quantitative methodology was used in this study and data collection was based on Google Forms while questionnaires were established by inheriting from previous related studies. According to the results, users perceive the ease of use and usefulness thanks to the relevance to their tasks that AI banking applications bring, thereby positively impacting their adoption. However, the application has not brought significant satisfaction to users. The study is expected to make a positive theoretical contribution to future research in banking technology. This study recommends that application developers integrate many features of AI technology to increase user satisfaction and adoption of AI banking applications. This study also suggests that future studies should evaluate and measure more hypothetical concepts to comprehensively assess user acceptance of AI applications in the finance sector for personal customers.
Từ khóa
Sự chấp nhận sử dụng; Sự hài lòng; Tính dễ sử dụng; Tính hữu ích; Tính phù hợp với tác vụ công nghệ
Chi tiết bài viết
Lĩnh vực kinh tế (JEL Codes)
L81 - Retail and Wholesale Trade • e-Commerce - L84 - Personal, Professional, and Business Services - Industry Studies: Services, M15 - IT Management - Business Administration
Tài liệu tham khảo
Braun, M. T. (2013). Obstacles to social networking website use among older adults. Computers in Human Behavior, 29(3), 673-680. https://doi.org/10.1016/j.chb.2012.12.004
Chen, N. H. (2019). Extending a TAM–TTF model with perceptions toward telematics adoption. Asia Pacific Journal of Marketing and Logistics, 31(1), 37-54. https://doi.org/10.1108/APJML-02-2018-0074
Cheng, X., Qiao, L., Yang, B., & Li, Z. (2023). An investigation on the influencing factors of elderly people's intention to use financial AI customer service. Internet Research, 34(3), 690-717. https://doi.org/10.1108/INTR-06-2022-0402
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008
DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: a ten-year update. Journal of Management Information Systems, 19(4), 9-30. https://doi.org/10.1080/07421222.2003.11045748
Deswanto, V. (2020, February). Satisfaction of Using Mobile Banking in Islamic Banks: TTF and Information Quality Perspective. In ACEBISS 2019: Proceedings of the First Annual Conference of Economics, Business, and Social Science, ACEBISS 2019, 26-30 March, Jakarta, Indonesia (p. 64). European Alliance for Innovation. https://doi.org/10.4108/eai.26-3-2019.2290688
Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. Journal of Marketing Research, 18(3), 382-388. https://doi.org/10.1177/002224378101800313
Jayanty, S. (2012). Agency Banking: New Frontiers in Financial Inclusion. Infosys Finacle Thought Paper, Bangalore. https://www.slideshare.net/slideshow/agency-banking-fdc/13233890
Garson, G. D. (2016). Partial Least Squares: Regression & Structural Equation Models (2016 Editi). Asheboro: Statistical Associates Publishing. https://www.smartpls.com/resources/ebook_on_pls-sem.pdf
Goodhue, D. L., & Thompson, R. L. (1995). Task-technology fit and individual performance. MIS Quarterly, 19(2), 213-236. https://doi.org/10.2307/249689
Govender, I., & Sihlali, W. (2014). A study of mobile banking adoption among university students using an extended TAM. Mediterranean Journal of Social Sciences, 5(7), 451. https://doi.org/10.5901/mjss.2014.v5n7p451
Grigoreva, E. A., Garifova, L. F., & Polovkina, E. A. (2021). Consumer Behavior in the Information Economy: Generation Z. International Journal of Financial Research, 12(2), 164. https://doi.org/10.5430/ijfr.v12n2p164
Gupta, A., & Arora, N. (2017). Consumer adoption of m-banking: a behavioral reasoning theory perspective. International Journal of Bank Marketing, 35(4), 733-747. https://doi.org/10.1108/ijbm-11-2016-0162
Gupta, K. P., Manrai, R., & Goel, U. (2019). Factors influencing adoption of payments banks by Indian customers: extending UTAUT with perceived credibility. Journal of Asia Business Studies, 13(2), 173-195. https://doi.org/10.1108/jabs-07-2017-0111
Ha, H. (2020). The cashless economy in Vietnam - The situation and policy implications. Journal of Reviews on Global Economics, 9(1), 216-223. https://doi.org/10.6000/1929-7092.2020.09.20
Hair, J. F., Hult, G. T. M., Ringle, C. M. & Sarstedt, M. (2017). A primer on partial least squares structural equation modeling (PLS-SEM). 2nd ed. California: SAGE. https://www.amazon.com/Advanced-Partial-Structural-Equation-Modeling/dp/1071862502
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24. https://doi.org/10.1108/ebr-11-2018-0203
Hassan, H. E., & Wood, V. R. (2020). Does country culture influence consumers' perceptions toward mobile banking? A comparison between Egypt and the United States. Telematics and Informatics, 46, 101312. https://doi.org/10.1016/j.tele.2019.101312
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the academy of marketing science, 43, 115-135. https://doi.org/10.1007/s11747-014-0403-8
Islam, J. U., Shahid, S., Rasool, A., Rahman, Z., Khan, I., & Rather, R. A. (2020). Impact of website attributes on customer engagement in banking: a solicitation of stimulus-organism-response theory. International Journal of Bank Marketing, 38(6), 1279-1303. https://doi.org/10.1108/ijbm-12-2019-0460
Kaplan, D. (2008). Structural Equation Modeling: Foundations and Extensions (Vol. 10). Thousand Oaks, CA.: Sage. https://doi.org/10.4135/9781452226576
Kelly, A. E., & Palaniappan, S. (2019). Survey on customer satisfaction, adoption, perception, behaviour, and security on mobile banking. Journal of Information Technology & Software Engineering, 9(2), 1-15. https://www.longdom.org/open-access-pdfs/survey-on-customer-satisfaction-adoption-perception-behaviour-and-security-on-mobile-banking.pdf
Kline, R. B. (2015). Principles and Practice of Structural Equation Modeling. London: Guilford Publications. https://www.amazon.com/Principles-Practice-Structural-Equation-Methodology/dp/146252334X
Kwateng, K. O., Atiemo, K. A. O., & Appiah, C. (2018). Acceptance and use of mobile banking: an application of UTAUT2. Journal of Enterprise Information Management, 32(1), 118-151. https://doi.org/10.1108/jeim-03-2018-0055
Lee, J. C., & Chen, X. (2023). Exploring users' adoption intentions in the evolution of artificial intelligence mobile banking applications: the intelligent and anthropomorphic perspectives. International Journal of Bank Marketing, 40(4), 631-658. https://doi.org/10.1108/ijbm-08-2021-0394
Li, Y., & Shang, H. (2020). Service quality, perceived value, and citizens’ continuous-use intention regarding e-government: Empirical evidence from China. Information & Management, 57(3), 103197. https://doi.org/10.1016/j.im.2019.103197
Lin, T. C., & Huang, C. C. (2008). Understanding knowledge management system usage antecedents: An integration of social cognitive theory and task technology fit. Information & Management, 45(6), 410-417. https://doi.org/10.1016/j.im.2008.06.004
Loureiro, S. M. C., Guerreiro, J., & Tussyadiah, I. (2021). Artificial intelligence in business: State of the art and future research agenda. Journal of Business Research, 129, 911-926. https://doi.org/10.1016/j.jbusres.2020.11.001
Lowry, P. B., Karuga, G. G., & Richardson, V. J. (2007). Assessing leading institutions, faculty, and articles in premier information systems research journals. Communications of the Association for Information Systems (CAIS), 20(16), 142-203. https://doi.org/10.17705/1cais.02016
Oliveira, T., Faria, M., Thomas, M. A., & Popovič, A. (2014). Extending the understanding of mobile banking adoption: When UTAUT meets TTF and ITM. International journal of Information Management, 34(5), 689-703. https://doi.org/10.1016/j.ijinfomgt.2014.06.004
Manser Payne, E. H., Peltier, J., & Barger, V. A. (2021). Enhancing the value co-creation process: artificial intelligence and mobile banking service platforms. Journal of Research in Interactive Marketing, 15(1), 68-85. https://doi.org/10.1108/jrim-10-2020-0214
Madu, C. N., & Madu, A. A. (2002). Dimensions of e‐quality. International Journal of Quality & Reliability Management, 19(3), 246-258. https://doi.org/10.1108/02656710210415668
Meet, R. K., Kala, D., & Al-Adwan, A. S. (2022). Exploring factors affecting the adoption of MOOC in Generation Z using extended UTAUT2 model. Education and Information Technologies, 27(7), 10261-10283. https://doi.org/10.1007/s10639-022-11052-1
Merhi, M., Hone, K., & Tarhini, A. (2019). A cross-cultural study of the intention to use mobile banking between Lebanese and British consumers: Extending UTAUT2 with security, privacy and trust. Technology in Society, 59, 101151. https://doi.org/10.1016/j.techsoc.2019.101151
Mehrabian, A., & Russell, J. A. (1974). An approach to environmental psychology. the MIT Press. https://mitpress.mit.edu/9780262630719/an-approach-to-environmental-psychology/
Milana, C., & Ashta, A. (2021). Artificial intelligence techniques in finance and financial markets: a survey of the literature. Strategic Change, 30(3), 189-209. https://doi.org/10.1002/jsc.2403
Munsch, A. (2021). Millennial and generation Z digital marketing communication and advertising effectiveness: A qualitative exploration. Journal of Global Scholars of Marketing Science, 31(1), 10-29. https://doi.org/10.1080/21639159.2020.1808812
Nguyen, M. T. B., Khuc, N. D., & Phan, H. T. L. (2021). Các nhân tố ảnh hưởng đến sự hài lòng của khách hàng cá nhân về dịch vụ Internet Banking của các ngân hàng thương mại tại Thành phố Hồ Chí Minh. HCMCOUJS-Kinh tế và Quản trị Kinh doanh, 16(3), 121-134. https://doi.org/10.46223/hcmcoujs.econ.vi.16.3.1299.2021
Nhi An. (2023). Giao dịch thanh toán qua điện thoại di động và QR tăng trường đột phá. Retrieved July 25, 2023 from https://vneconomy.vn/giao-dich-thanh-toan-qua-dien-thoai-di-dong-va-qr-tang-truong-dot-pha.htm
Payne, E. M., Peltier, J. W., & Barger, V. A. (2018). Mobile banking and AI-enabled mobile banking: The differential effects of technological and non-technological factors on digital natives’ perceptions and behavior. Journal of Research in Interactive Marketing, 12(3), 328-346. https://doi.org/10.1108/JRIM-07-2018-0087
Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40(3), 879-891. https://doi.org/10.3758/brm.40.3.879
Priya, R., Gandhi, A. V., & Shaikh, A. (2018). Mobile banking adoption in an emerging economy: An empirical analysis of young Indian consumers. Benchmarking: An International Journal, 25(2), 743-762. https://doi.org/10.1108/BIJ-01-2016-0009
Rahi, S., Khan, M. M., & Alghizzawi, M. (2021). Extension of technology continuance theory (TCT) with task technology fit (TTF) in the context of Internet banking user continuance intention. International Journal of Quality & Reliability Management, 38(4), 986-1004. https://doi.org/10.1108/ijqrm-03-2020-0074
Ringle, C., Da Silva, D., & Bido, D. (2015). Structural equation modeling with the SmartPLS. Brazilian Journal Of Marketing, 13(2), 56–73. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2676422
Rogers, Everett M. (1962). Diffusion of Innovations. New York: The Free Press of Glencoe. https://books.google.com.vn/books/about/Diffusion_of_Innovations.html?id=zw0-AAAAIAAJ
Suhartanto, D., Syarief, M. E., Chandra Nugraha, A., Suhaeni, T., Masthura, A., & Amin, H. (2022). Millennial loyalty towards artificial intelligence-enabled mobile banking: evidence from Indonesian Islamic banks. Journal of Islamic Marketing, 13(9), 1958-1972. https://doi.org/10.1108/jima-12-2020-0380
Szymkowiak, A., Melović, B., Dabić, M., Jeganathan, K., & Kundi, G. S. (2021). Information technology and Gen Z: The role of teachers, the internet, and technology in the education of young people. Technology in Society, 65, 101565. https://doi.org/10.1016/j.techsoc.2021.101565
Tam, C., & Oliveira, T. (2016a). Understanding the impact of m-banking on individual performance: DeLone & McLean and TTF perspective. Computers in Human Behavior, 61, 233-244. https://doi.org/10.1016/j.chb.2016.03.016
Tam, C., & Oliveira, T. (2016b). Performance impact of mobile banking: using the task-technology fit (TTF) approach. International Journal of Bank Marketing, 34(4), 434-457. https://doi.org/10.1108/ijbm-11-2014-0169
Tam, C., & Oliveira, T. (2019). Does culture influence m-banking use and individual performance? Information & Management, 56(3), 356-363. https://doi.org/10.1016/j.im.2018.07.009
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204. https://doi.org/10.1287/mnsc.46.2.186.11926
Wetzels, M., Odekerken-Schröder, G., & Van Oppen, C. (2009). Using PLS path modeling for assessing hierarchical construct models: Guidelines and empirical illustration. MIS Quarterly, 33(1), 177-195. https://doi.org/10.2307/20650284
Wu, B., & Chen, X. (2017). Continuance intention to use MOOCs: Integrating the technology acceptance model (TAM) and task technology fit (TTF) model. Computers in human behavior, 67, 221-232. https://doi.org/10.1016/j.chb.2016.10.028
Yen, D. C., Wu, C. S., Cheng, F. F., & Huang, Y. W. (2010). Determinants of users’ intention to adopt wireless technology: An empirical study by integrating TTF with TAM. Computers in Human Behavior, 26(5), 906-915. https://doi.org/10.1016/j.chb.2010.02.005
Yi, E. L. Y., Sng, W. C., Leong, C. M., & Ho, S. J. (2020). Determinants of mobile banking services continuance intention in Malaysia. Journal of Marketing Advances and Practices, 3(1), 20-41. https://ajbir.org/assets/document/JAMP/Volume3_issue1_January_2021/02-Determinants-of-Mobile-Banking-Services-Continuance-Intention-in-Malaysia.pdf
Yousafzai, S. Y. (2012). A literature review of theoretical models of Internet banking adoption at the individual level. Journal of Financial Services Marketing, 17, 215-226. https://doi.org/10.1057/fsm.2012.19
Zhou, M., Zhao, L., Kong, N., Campy, K. S., Qu, S., & Wang, S. (2019). Factors influencing behavior intentions to telehealth by Chinese elderly: An extended TAM model. International Journal of Medical Informatics, 126, 118-127. https://doi.org/10.1016/j.ijmedinf.2019.04.001
Zhou, T., Lu, Y., & Wang, B. (2010). Integrating TTF and UTAUT to explain mobile banking user adoption. Computers in Human Behavior, 26(4), 760-767. https://doi.org/10.1016/j.chb.2010.01.013
Zimand-Sheiner, D., Ryan, T., Kip, S. M., & Lahav, T. (2020). Native advertising credibility perceptions and ethical attitudes: An exploratory study among adolescents in the United States, Turkey and Israel. Journal of Business Research, 116, 608-619. https://doi.org/10.1016/j.jbusres.2019.06.020
Các bài báo được đọc nhiều nhất của cùng tác giả
- Bùi Ngọc Tuấn Anh, Trần Thị Lang Nguyên, Nguyễn Lê Phương Thảo, Mai Thị Hồng phượng, Lê Nguyễn Phương Thùy, Phạm Đức Thịnh, Ảnh hưởng của truyền miệng điện tử (eWOM) đến ý định mua hàng của thế hệ Z trên TikTok , Tạp chí Nghiên cứu Tài chính - Marketing: Số 92 (2025)