Integrating artificial intelligence into sustainable human resource management practices: A bibliometric analysis (2009–2024)
Main Article Content
Abstract
In the context of accelerating digital transformation, the integration of Artificial Intelligence (AI) into sustainable Human Resource Management (HRM) has emerged as a key focus in both academic and practical domains. This study systematically examines the landscape of AI applications in sustainable HRM through a bibliometric analysis based on a dataset of 188 peer-reviewed publications from 2009 to 2024. Utilizing VOSviewer software, the study analyzes citation networks, keyword co-occurrence, and international research collaborations to identify major trends, influential authors, and emerging thematic clusters. The findings reveal a significant surge in research activity since 2020, particularly in areas such as AI-enhanced recruitment, performance evaluation, and green HRM initiatives. In addition, the study highlights ongoing challenges, including concerns about data privacy, algorithmic bias, and ethical transparency that hinder effective AI adoption. By synthesizing fragmented literature, this research provides a comprehensive overview of the field, contributes a novel bibliometric perspective, and proposes future research directions to ensure AI integration aligns with both sustainability goals and ethical HRM practices. The results provide valuable insights for scholars and policymakers aiming to foster responsible innovation in human resource management.
Keywords
AI Adoption; Artificial Intelligence; Bibliometric Analysis; Sustainable Human Resource Management; VOSviewer
Article Details
Field of Economic (JEL Codes)
M19 - Other - Business Administration, O33 - Technological Change: Choices and Consequences • Diffusion Processes - Innovation • Research and Development • Technological Change • Intellectual Property Rights, Q56 - Environment and Development • Environment and Trade • Sustainability • Environmental Accounts and Accounting • Environmental Equity • Population Growth - Environmental Economics
References
Böhmer, A., & Schinnenburg, A. (2023). Critical exploration of AI-driven HRM to build up organizational capabilities. Employee Relations, 45(5), 1057-1082. https://doi.org/10.1108/ER-04-2022-0202
Budhwar, P., Chowdhury, S., Wood, G., Aguinis, H., Bamber, G. J., Beltran, J. R., Boselie, P., Cooke, F. L., Decker, S., DeNisi, A., Dey, P. K., Guest, D., Knoblich, A. J., Malik, A., Paauwe, J., Papagiannidis, S., Patel, C., Pereira, V., Ren, S., Rogelberg, S., Saunders, M. N. K., Tung, R. L., & Varma, A. (2023). Human resource management in the age of generative artificial intelligence: Perspectives and research directions on ChatGPT. Human Resource Management Journal, 33(3), 606-659. https://doi.org/10.1111/1748-8583.12524
Chowdhury, S., Budhwar, P., Wood, G. (2024). Generative artificial intelligence in business: Towards a strategic human resource management framework. British Journal of Management, 35(4), 1680-1691. https://doi.org/10.1111/1467-8551.12824
Del Giudice, M., Scuotto, V., Orlando, B., & Mustilli, M. (2023). Toward the human - Centered approach: A revised model of individual acceptance of AI. Human Resource Management Review, 33(1). https://doi.org/10.1016/j.hrmr.2021.100856
Ehnert, I., Harry, W., & Zink, K. J. (Eds.). (2014). Sustainability and human resource management: Developing sustainable business organizations (1st ed.). Springer. https://doi.org/10.1007/978-3-642-37524-8
Evseeva, S., Evseeva, O., Burmistrov, A., & Siniavskii, A. (2021). Application of artificial intelligence in human resources management in the agricultural sector. E3S Web of Conferences, 258. https://doi.org/10.1051/e3sconf/202125801010
Faisal, S. (2023). Twenty-years journey of sustainable human resource management research: A Bibliometric analysis. Administrative Sciences, 13(6). https://doi.org/10.3390/admsci13060139
Garg, V., Srivastav, S., & Gupta, A. (2018). Application of artificial intelligence for sustaining green human resource management. Proceedings of the International Conference on Industrial Engineering and Applications (ICIEA) (pp. 358–362). IEEE. https://doi.org/10.1109/ICACE.2018.8686988
Jatobá, M. N., Ferreira, J. J., Fernandes, P. O., & Teixeira, J. P. (2023). Intelligent human resources for the adoption of artificial intelligence: A systematic literature review. Journal of Organizational Change Management, 36(7), 1099–1124. https://doi.org/10.1108/JOCM-03-2022-0075
Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1, 389–399. https://doi.org/10.1038/s42256-019-0088-2
Kaushal, N., Kaurav, R. P. S., Sivathanu, B., & Kaushik, N. (2023). Artificial intelligence and HRM: Identifying future research agenda using systematic literature review and bibliometric analysis. Management Review Quarterly, 73, 455–493. https://doi.org/10.1007/s11301-021-00249-2
Koştı, G., & Kayadibi, İ. (2025). A bibliometric analysis of artificial intelligence and machine learning applications for human resource management. Future Business Journal, 11. https://doi.org/10.1186/s43093-025-00602-x
Kramar, R. (2014). Beyond strategic human resource management: Is sustainable human resource management the next approach?. The International Journal of Human Resource Management, 25(8), 1069–1089. https://doi.org/10.1080/09585192.2013.816863
Kraus, S., Ferraris, A., & Bertello, A. (2023). The future of work: How innovation and digitalization reshape the workplace. Journal of Innovation & Knowledge, 8(4). https://doi.org/10.1016/j.jik.2023.100438
Larbi-Siaw, O., Xuhua, H., Owusu, E., Owusu-Agyeman, A., Fulgence, B. E., & Frimpong, S. A. (2022). Eco-innovation, sustainable business performance, and market turbulence moderation in emerging economies. Technology in Society, 68. https://doi.org/10.1016/j.techsoc.2022.101899
Menon, S., Yadav, J., Chopra, A., & Thomas, J. (2024). Strategic integration of analytics and artificial intelligence in sustainable human resource management: Fostering HR excellence. 2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO) (pp. 1–5). IEEE. https://doi.org/10.1109/ICRITO61523.2024.10522141
Muñoz Pascual, L., & Galende del Canto, J. (2020). Sustainable human resource management and organisational performance: An integrating theoretical framework for future research. Small Business International Review, 4(2). https://doi.org/10.26784/sbir.v4i2.281
Murugesan, U., Subramanian, P., Srivastava, S., & Dwivedi, A. (2023). A study of artificial intelligence impacts on human resource digitalization in Industry 4.0. Decision Analytics Journal, 7. https://doi.org/10.1016/j.dajour.2023.100249
Nugraha Adz Zikri, A. F., Widianto, S., & Komaladewi, R. (2024). Retracted: Sustainable human resource management: A transformation perspective of HRM functions through optimized artificial intelligence. Jurnal Aplikasi Bisnis dan Manajemen, 10(2), 557–570. https://doi.org/10.17358/jabm.10.2.557
Ogbeibu, A. E., Jabbour, C. J. C., Burgess, J., Gaskin, J., & Renwick, D. W. S. (2022). Green talent management and turnover intention: The roles of leader STARA competence and digital task interdependence. Journal of Intellectual Capital, 23(1), 27–55. https://doi.org/10.1108/JIC-01-2021-0016
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, Al. A., Stewart, L. A., Thomas, J., Tricco, A. C., Welch, V. A., & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372. https://doi.org/10.1136/bmj.n71
Pan, J., & Froese, F. J. (2023). An interdisciplinary review of AI and HRM: Challenges and future directions. Human Resource Management Review, 33(1). https://doi.org/10.1016/j.hrmr.2022.100924
Prikshat, V., Islam, M., Patel, P., Malik, A., Budhwar, P., & Gupta, S. (2023). AI-augmented HRM: Literature review and a proposed multilevel framework for future research. Technological Forecasting and Social Change, 193. https://doi.org/10.1016/j.techfore.2023.122645
Qamar, Y., Agrawal, R. K., Samad, T. A., & Jabbour, C. J. C. (2021). When technology meets people: The interplay of artificial intelligence and human resource management. Journal of Enterprise Information Management, 34(5), 1339–1370. https://doi.org/10.1108/JEIM-11-2020-0436
Soekotjo, S., Sosidah, Kuswanto, H., Setyadi, A., & Pawirosumarto, S. (2025). A conceptual framework for sustainable human resource management: Integrating ecological and inclusive perspectives. Sustainability, 17. https://doi.org/10.3390/su17031241
Sova, O., Bieliaieva, N., Antypenko, N., & Drozd, N. (2023). Impact of artificial intelligence and digital HRM on the resource consumption within sustainable development perspective. E3S Web of Conferences, 408. https://doi.org/10.1051/e3sconf/202340801006
Tanantong, T., & Wongras, P. (2024). A UTAUT-based framework for analyzing users’ intention to adopt artificial intelligence in human resource recruitment: A case study of Thailand. Systems, 12(1). https://doi.org/10.3390/systems12010028
Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3
Votto, A. M., Valecha, R., Najafirad, P., & Rao, H. R. (2021). Artificial intelligence in tactical human resource management: A systematic literature review. International Journal of Information Management Data Insights, 1(2). https://doi.org/10.1016/j.jjimei.2021.100047
Vrontis, D., Christofi, M., Pereira, V., Tarba, S., Makrides, A., & Trichina, E. (2023). Artificial intelligence, robotics, advanced technologies and human resource management: A systematic review. In A. Malik, P. Budhwar (Eds.), Artificial intelligence and international HRM. Routledge. https://doi.org/10.4324/9781003377085-7
Xiang, H., Lu, J., Kosov, M. E., Volkova, M. V., Ponkratov, V. V., Masterov, A. I., Elyakova, I. D., Popkov, S. Y., Taburov, D. Y., Lazareva, N. V., Muda, I., Vasiljeva, M. V., & Zekiy, A. O. (2023). Sustainable development of employee lifecycle management in the age of global challenges: Evidence from China, Russia, and Indonesia. Sustainability, 15(6). https://doi.org/10.3390/su15064987
Yawson, R. M., & Goryunova, E. (2025). Nested complexity: A conceptual framework for leveraging AI for sustainable organizations and human resource development. Advances in Developing Human Resources, 27(2–3). https://doi.org/10.1177/15234223251335908