

EXPLORING CUSTOMER ACCEPTANCE OF ARTIFICIAL INTELLIGENCE IN VIETNAM'S HOTEL INDUSTRY

Hoang Le Chi^{1,2*}, Do Nhu Luc²

¹Nguyen Tat Thanh University, Vietnam

²Posts and Telecommunications Institute of Technology, Vietnam

*Corresponding author: Email: hlechi@me.com

Received: August 13, 2025 Accepted: November 05, 2025. Published: November 25, 2025
DOI: 10.52932/jfmrv3i5ene.1073

Appendix 1. Measurement scales for the constructs

The following scales were employed to operationalize the key constructs in our theoretical framework. These instruments were adapted from established sources in the literature, ensuring reliability and validity within the context of AI acceptance in hospitality services. All items were measured using a 7-point Likert scale, ranging from 1 (strongly disagree) to 7 (strongly agree), unless otherwise specified.

Social Influence

Sources: Gursoy et al. (2019); Chi et al. (2020); Venkatesh et al. (2012)

1. People who are important to me think that I should use AI in hotel service settings.
2. My friends and family would support my decision to use AI devices when experiencing hotel services.
3. Individuals who influence my behavior expect me to use AI when experiencing hotel services.
4. People in my social network who use AI devices tend to have higher prestige than those who do not.

Hedonic Motivation

Sources: Gursoy et al. (2019); Chi et al. (2020); Venkatesh et al. (2012)

5. Using AI devices in hotel service experiences is very enjoyable.
6. I enjoy interacting with AI technology when experiencing hotel services.
7. Using AI enhances my overall experience at the hotel.
8. Interacting with AI devices during hotel service experiences would be highly entertaining.

Anthropomorphism

Sources: Gursoy et al. (2019); Chi et al. (2020); Venkatesh et al. (2012)

9. I feel that the hotel's AI devices possess human-like qualities.
10. I can relate to the AI devices as if they were human.
11. The AI devices exhibit emotions similar to those of humans.
12. I perceive the AI devices as having their own intelligence.

Performance Expectancy

Sources: Gursoy et al. (2019); Chi et al. (2020); Venkatesh et al. (2012)

13. Using the hotel's AI devices enables me to experience hotel services more efficiently.
14. I believe that AI technology improves the quality of hotel services.
15. Using AI devices helps me achieve better outcomes when experiencing hotel services.
16. AI devices provide more consistent hotel services than humans.
17. AI devices perform tasks more accurately than humans.

Effort Expectancy

Sources: Gursoy et al. (2019); Chi et al. (2020); Venkatesh et al. (2012)

18. Working with AI devices requires a significant amount of my effort.
19. Using AI devices consumes too much of my time.
20. I spend excessive time learning how to interact with AI devices.
21. Working with AI devices is difficult to understand and use in hotel services.

Emotions

Sources: Gursoy et al. (2019); Chi et al. (2020); Venkatesh et al. (2012)

22. Using AI devices during hotel service experiences makes me feel happy.
23. I feel excited when interacting with AI technology during hotel service experiences.
24. Using AI in hotel service experiences evokes positive emotions in me.

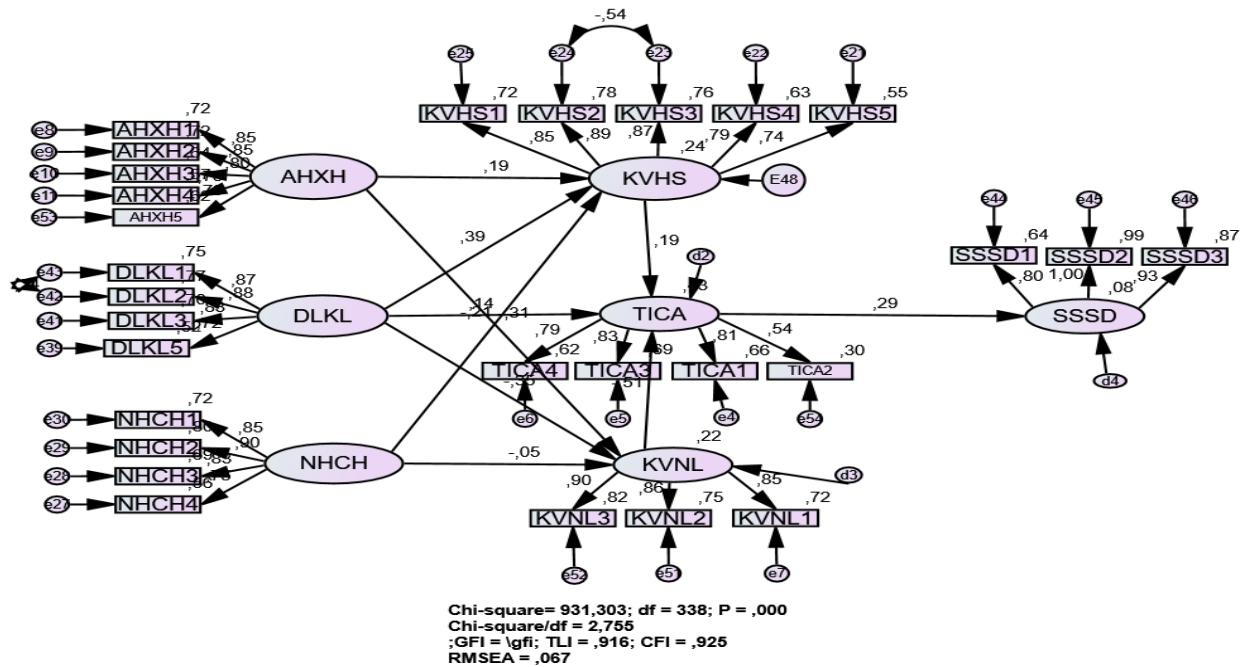
Readiness to Use AI

Sources: Gursoy et al. (2019); Chi et al. (2020); Venkatesh et al. (2012)

25. I want to interact with AI technology in the hotel.
26. I am willing to use AI for booking rooms and requesting services.
27. I would feel pleased interacting with AI devices in hotel services.

Appendix 2. Descriptive Statistics of the Research Sample

Variable	Category	Frequency	Percentage
Gender	Female	210	54%
	Male	178	46%
	Total	388	100%
Age	Under 25	97	25%
	25–34	175	45%
	35 and above	116	30%
	Total	388	100%
Income	Under 15 million VND	85	22%
	15–25 million VND	159	41%
	Above 25 million VND	144	37%
	Total	388	100%
Region	Ho Chi Minh City (HCMC)	136	35%
	Hanoi (HN)	112	29%
	Other	140	36%
	Total	388	100%


Note. Percentages are based on the valid sample of 388 respondents. Income is reported in Vietnamese đồng (VND).

Appendix 3. Assessment of Convergent and Discriminant Validity for the Saturated Measurement Model

Construct	CR	AVE	MS	MaxR(H)	AHXH	KVHS	NHCH	DLKL	SSSD	KVNL	TICA
AHXH	0.90 5	0.65 5	0.08 6	0.909	0.809						
KVHS	0.91 9	0.69 5	0.17 8	0.927	0.166*	0.834					
NHCH	0.90 0	0.69 4	0.19 6	0.910	-0.049	-	0.833				
DLKL	0.89 5	0.68 2	0.26 9	0.903	-0.070	0.422*	-	0.826			
SSSD	0.93 8	0.83 6	0.26 9	0.973	0.093†	0.418*	-	0.519*	0.914		
KVNL	0.90 3	0.75 7	0.36 6	0.907	-	-	0.049	-	-	0.870	
TICA	0.84 0	0.57 4	0.36 6	0.865	0.294*	0.390*	-	0.358*	0.269*	-	0.75
					**	**	0.126*	**	**	0.605*	8
											**

Notes: CR = Composite Reliability (> 0.7); AVE = Average Variance Extracted (> 0.5); MaxR(H) = Maximum Reliability (approaching 1).

Appendix 4. SEM results for the theoretical model

